If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+163Y+148
We move all terms to the left:
-(-16Y^2+163Y+148)=0
We get rid of parentheses
16Y^2-163Y-148=0
a = 16; b = -163; c = -148;
Δ = b2-4ac
Δ = -1632-4·16·(-148)
Δ = 36041
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-163)-\sqrt{36041}}{2*16}=\frac{163-\sqrt{36041}}{32} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-163)+\sqrt{36041}}{2*16}=\frac{163+\sqrt{36041}}{32} $
| y=-5(1)-3 | | 3x+2+4x=88 | | 3x+2•4x=88 | | x+1-x=2x-5+x | | 4x+15+6x-5+21x-9=180 | | 4(y=4)=32 | | 11n+51=79 | | 6x+12=5(x+4) | | 25x+x+2x=27 | | Y4+4y2-117=0 | | y=-5(-1)-3 | | 6x+12=5(x+4 | | -8x-4+4x=16 | | 8y+4=7y+-2 | | -6(8-7x)=-9(6-4x) | | 0.25-0.6=x | | (2x-45)+(x+30)=90 | | 8x-3=11x+18 | | 8y+4=7y+2 | | 2(a-40=4a-(2a+4) | | -8x+5(x-6)=-21-2x | | 1/0.6=x | | 2|x+7|+3=13 | | 103/5f=8-1/2f | | 20+(5y-7)=180 | | 0.12(y-9)+0.08y=0.10y-0.6 | | 3x-2-5=4 | | 6+20=9x+2 | | (9x-5)+(7x-7)=180 | | 0.2x–8=–2–x | | x-5-4=10 | | 2(x+2)=4x+1=-x |